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Aging and its distribution in coarsening processes
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We investigate the age distribution functi®fr,t) in prototypical coarsening processes. HB(et) is the
probability density that in a time interval ¢Q,a given site was last crossed by an interface in the coarsening
process at time. We determineP(7,t) exactly in one dimension for thigeterministig two-velocity ballistic
annihilation process and thstochastit infinite-state Potts model with zero-temperature Glauber dynamics.
Surprisingly, we find that in the scaling limig(r,t) is identical for these two models. We also show that the
average age, i.e., the average time since a site was last visited by an interface, grows linearly with the
observation time. This latter property is also found in the one-dimensional Ising model with zero-temperature
Glauber dynamics. We also discuss the age distribution in dimedsidghand find similar qualitative features
to those in one dimensionS1063-651X97)09406-3

PACS numbseps): 02.50.Ga, 05.70.Ln, 05.40j

[. INTRODUCTION AND PROBLEM STATEMENT spins of agé. The total age distribution density of the spins
is therefore
Coarsening underlies various natural nonequilibrium pro-
cesses, e.g., phase separation in binary alloys, grain growth, P(m,)=Po(t) 6(7) + P(7,1). )

and growth of soap bubbl¢g]. A common feature of coars- '{he densityP(7,t) should satisfy the normalization condi-

ening phenomena is the scale-invariant morphology th | n X .
arises in the late stadé,?]. Such a behavior is a signature ofagggnfé’g CII:;( 7.t)=1, while the average age of the system is

dynamical scaling. If dynamical scaling holds, the average
domain size I(t) typically exhibits algebraic growth t t
I(t)~ t¥2. T=f dT(t—T)P(T,t)ZtPO(t)"‘j dr(t—1)P,(7,1).
It has recently been appreciated that knowledge of the 0
. . . X 2
dynamical exponert doesnot provide a comprehensive de

scription of the coarsening dynamics. In particular, the expo- The age distributiorP(,t) will be of primarily impor-
nent\, which describes the dependence of the autocorrelaance in systems with history-dependent dynamics, such as
tion functionA(t) =(s(x,0)s(x,t)), wheres(x,t) is the order  glassy system$11], and in systems with infinite memory
parameter at positior and timet, on the average domain where actual aging takes place. Generally, when a two-time
size A(t)~ I(t)~* [2-4], and the exponen#, which char-  correlation functiorC(r,t) ={s(x,7)s(x,t)) becomes a func-
acterizes(in magnetic languagethe fraction of spins that tion of a single variabler/t, instead of being a function of
have never flippedPy(t)~ t~ ¢ [5-7], were found to be in- t—7 (as in an equilibrium systemthis is interpreted as a
dependent of the dynamical exponemtThe latter quantity ~ Signature of aging12—14. According to this definition, ag-
Po(t) naturally suggests the generalizatiorPig(t), the frac-  ing is a characteristic of coarsening processes and the scaling
tion of spins that have flipped exactiytimes up to time [8]

as a detailed and fundamental characterization of the tempo-
ral history of spin flips.

In this paper, we probe the temporal history of coarsening
processes, at a deeper level than that provided by the auto
correlation functior9,10], by focusing on the time- when
the last spin flip occurgFig. 1). More generally, we may
introduceP,(7,t) as the probability that a given spin flips
n times up to time andthat the last spin flip occurs at time
7. Here we investigat®, (7,t), which focuses on the last (a) (b)
spin flip and does not specify the total number of flips
P+(7'-,,t)22n?an_(r,t_). If we view a spin as being “re- FIG. 1. Graphical definition ofP(r,t) for one-dimensional
bolrn each time it flips, thgrP+(7-,t) gives the.densny ‘_)f coarsening processes. At the point marked by the dashed line, the
spins of “age” t— 7. There is also a finite fraction of spins gpin |ast flips, or, equivalently, is visited by a domain wall, at time
that have not yet flipped; these spins should be treated as The specific examples shown de the infinite-state Potts model

(in which the domain walls undergo diffusive single-species coales-
cence and (b) the deterministic coarsening of a three-state system
*Present address: Laboratoire de Physique Statistique, ENS, 24ith cyclic interactionsin which the domain walls undergo ballis-
rue Lhomond, 75231 Paris Cedex 05, France. tic single-species annihilation
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dependenc®(r,t)=t"1f(/t) has been found in a number whenever two interfaces meet. These rules are precisely

of pertinent examplegl5,16|. those of the ballistically driven single-species annihilation
The age distribution will also play a fundamental role reaction. The simplicity and rich phenomenology of this re-

when the dynamics of a system is explicitly time dependentaction has stimulated extensive fundamental wdr8—23,

A potentially interesting situation is that of the “adaptive” as well as related applications to growth proce$8ds-217,

voter model. The conventional voter moddl7] is a two- and the dynamics of interacting populatidi28—30.

state lattice system in which a votesite) randomly chooses We start by describing the behavi{d9,22 of the ballistic

one of its nearest neighbors and assumes the state of thasnihilation model for the domain walls. In this model, the

neighbor. In the adaptive extension of this model the probdensities of right-moving and left-moving walls are equal,

ability that a given voter changes its opinion depends on thavith velocities that can be taken to bel without loss of

local environmenias in the usual voter modeand on the  generality. From the exact solutiofl9], the probability

time interval since this particular voter last changed its opin-S(t) for an arbitrary interface to survive up to tines

ion. This might be viewed as a model to describe the increas-

ing conservatism of people when they are not stimulated by S(t)y=e 2[l1y(2t)+1,(21)]. 3)

contact with those of differing opinions. This adaptive voter

model exhibits rather unexpected coarsening dynamics thalere|; denotes the modified Bessel function of orjlend

is ultimately driven by the underlying age distributiphB]l.  the initial spatial distribution of interfaces is assumed to be

In particular, we find coarsening for all spatial dimensions,poissonian(no correlationy with the initial densities of+

while the conventional voter model coarsens only for spatia|nterfaces taken to be equal 1/2.

dimensiond=<2. _ o To obtain the age distribution for the coarsening process
In Secs. i and. I, we consider th_e age distribution fo_rinduced by this domain wall dynamics, first considry(t),

two specific one-dimensional coarsening processes for whicthe fraction of space that has not been crossed by any inter-

exact results can be obtained. In Sec. Il, we first treat g5ce in the time interval (6). One can interpre®,(t) as the

deterministic three-state model of coarsening in which theygpapbility that a stationary “target” particle, which is

dynamics of the domain walls is simply that of two-velocCity piaced at the origin, for example, is not hit by any moving

ballistic annihilation in one dimension. Because of thisgomain wall. It is convenient to consider an auxiliary one-

equivalence, it is possible to obtain the exact expression fogiged problem with interfaces distributed only to the right of

P(7,t) by simple means. In Sec. Ill, we investigate the agehe origin. For this case, the survival probability of the sta-
distribution in two stochastic coarsening models. The first igjonary particleSy(t) is [21]

the infinite-state one-dimensional Potts model in which the
domain wall dynamics is simply diffusion-limited coales- ty=e T1a(t)+1(t 4
cence process, which may be representedaf\—A. We Solt) Ho()+12()]- @

find that the scaling form of the age distribution is identical , . , .
. S . Indeed, the relative velocity between a stationary particle and
to that found in the deterministic coarsening process. We

also consider the age distribution for the Ising model with'ts reaction partner is a factor of 2 smaller than the relative

zero-temperature Glauber dynamics in which, for one dimen\-/eIOCIty between two moving reaction partners. Hence

sion, the domain wall dynamics coincides with single—SO(t):S(t/Z) and Eq(4) follows from Eq.(3). Clearly, the

species diffusion-limited annihilation process, which may besurvwal probabilityP(t) in the original two-sided problem

represented ad+A—0. In this case, the age distribution 1S

has a bimodal “smiling” form as a function of, a result 2

that can be understood intuitively. We also discuss the age Po(t)=So()". ®)
distribution for the dynamical Ising model in dimension . o

d=2, for which the qualitative behavior is the same as in The continuous part of the age distributiéh (7,t) can
one dimension. Finally, we give an exact expression for thélso be expressed in terms of the survival probabiliBe

age distribution in the mean-field limit. Section IV gives a andSy(t). We first note that for the origin to be crossed by
brief summary and outlook. an interface during the time intervalr,(r+d7), a left-

moving interface should be initially located in the spatial

interval ~<x<r+dr or a right-moving interface should be
Il. AGING IN A DETERMINISTIC MODEL located in the spatial interval 7—d7<x<—r7. Each of
OF COARSENING IN ONE DIMENSION these events occurs with probability/2 for an initial inter-

We first examine the age distribution in a deterministic]cace density of unity.

coarsening model that describes phase ordering dynamics }gcselégiposg tqarlmtetrr:?h?:gi]rl::elrsf;c:gsvsxlﬁldutl)zrr?al'[e(aflt_rgz\/:r?n::i[-er_
a cyclic one-dimensional system with three equilibrium 9. 2. y

statesA, B, and C. The dynamics is cyclic so that tH lated with some right-moving interface at some future time

phase invades th& phase,C invadesB, andA invadesC. t;, which satisfies> r. If t,>(t+7)/2, then the origin can-
Corresponding to this dynamics, interfaces between dissimf—10t be crossed by a rlg_ht—r_novmg interface during the time
lar domains move toward the subordinate domain with T“e“’a' (7.0). Th_e contribution of these type of configura-
fixed velocity. A domain that is besieged by two dominant ions toP.,(.t) is
domains shrinks and eventually disappears, leading to the

merging of the neighboring domains. The interfaces there- S

fore undergo ballistic motion with annihilation occurring

t+7
2

So(t—17). (6)
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fixed[31]. The contribution of the third term of E¢) turns
out to be asymptotically negligible, while the second term
leads to the scaling form

t= P.(7,t)=t (&), 9
in the scaling limit

t—o, 7—00

&=t (10

2%.- T with the scaling function given by
[EERY RN 1-

2
ﬂa:; (11

1
FIG. 2. lllustration of a typical configuration that contributes to \/1_—52
P, (1) in the deterministic coarsening process generated by do-
main walls that undergo ballistic single-species annihilation. The A prominent feature of the age distribution is thagcales
left-moving domain wall trajectory that crosses the origin at timegst, That is, the average age
7 is shown as a heavy line. This domain wall is annihilated at a time

t,> 7 such that any right-moving trajectory cannot reach the origin 1 2
before timet=2t,— 7. T:<t—7'>2tJ’0 dé(1-9)f(§)= 1=t 12

The first factqr is just theT probability that the Ieft—moying grows linearly with the observation tinte

interface survives up to timet{ 7)/2. The latter factor in

Eq. (_6) is the probability that the initial location of the left- . AGING IN STOCHASTIC MODELS OF COARSENING
moving interface has not been crossed by any other left-
moving interface during the time interval {6, 7), which, in A. One dimension

turn, ensures that the origin remains uncrossed from the right The ballistic annihilation model is perhaps the simplest

during the time interval £,t). ; ; : . .
: ’ N one-dimensional coarsening process wdterministicdy-
Consider now the complementary situation when the left- gp y

A e L namics. We now consider simple examples of one-
moving interface that crosses the origin in the time 'ntervaldimensional coarsening processes veitachasticdynamics
(7,7+d7) survives to timet; with 7<t;<(t+ 7)/2. In this '

> ; . .. Consider first theg-state Potts model fogq=c0, with zero-
case, ad_dmonal rlght—mo_vlng interfaces can Cross t_he orlglrfemperature Glauber dynamics and with the initial condition
before tllmet. The contribution of such configurations to where each spin is in a different state. The dynamics pro-
P.(n1) is ceeds as follows: During the time intervdt a given spin
(t+ )2 assumes the state of one of its nearest neighbor with overall
So(t—T)f So(t—2t,+ T)[_S(tl)]dtl. (7) probability dt/2. In one dimension, the interfaces between
T domains of identical spins therefore diffuse and coalesce
whenever two domains meet. The domain wall dynamics is
Here So(t—7) again ensures that the origin remains un-thys identical to the diffusion-limited coalescence reaction,
crossed from the right during the time intervai,{). Simi-  which may be represented As- A—A.
larly, So(t—2t,+7) guarantees that the origin remains un-  Because of this equivalence between the Potts model and
crossed from the left. Finally:- S(t;)dt; is the probability the coalescence reaction, the age distribution can be calcu-
that the left-moving interface is annihilated in the time inter-lated exactly. Since interfaces coalesce upon colliding, only
val (t;,t;+dt;). Combining these contributions gives the the interfaces that are the nearest neighbors of a particular
final exact expression for the age distribution density site are important in determining its age distribution. In con-
structing the age distribution, first note that the spin will not
change its color up to timeif neither of the two neighboring
So(t=7) interfaces reaches the spin. The probabily(t) is thus
2 equivalent to the square of the probabil@(t,1) that a ran-
*T : dom walker on a lattice starting at positiocg=1 will not
~So(t=7) L So(t=2t+ 1) S(ty)dty. reach the origin up to time. The probability Q(t,1) is
readily computablg32] and gives the fraction of “persis-
®  tent” spins

The singular part of the age distributi®(t)28(r) cor- Po(t)={e [Io(t)+1.(t)]}% (13
responds to the fraction of space that has not been traversed
by any interface; in the long-time limit, this fraction decays To compute the contribution to the age distribution from
ast™’. To determine the asymptotic behavior of the continu-configurations where an interface has previously reached the
ous part of the age distribution, we substitute into @jthe  spin (which we may take to be at the origjret us assume
asymptotic expression$(t)~ 1/\/wt and Sy(t)~ V2/@t,  that this spin takes on a new color from its left neighbor at
which are found by using the asymptotic relations for thetime 7. This spin is now the right extremity of a domain of
modified Bessel functiond, (z) —e*/ y27z asz—» and]j same color spingsee Fig. 3.

t+71
2

P(7,t)=S(1)28(7)+S
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, e
ol Po(rt)=——[lo(t=7)+13(t= 7] 2, nly(7)
b s o s o o S "
! \: n—-1
e = -§+++++++E-“'T+d’c X Io(t—T)-I-ZkE [(t—7)+ 1 (t—7)|.
h ' -1
. n ,

(18)
FIG. 3. lllustration of one process that enters in the computation o ) o
of P, (rt) for the infinite-state Potts model. Shown is the spin N the scaling limit(10), the dominant contribution to the
configuration at times- and 7+dr just as one spin changes its Sum in Eq.(18) is provided by terms witto\t. In this
state. For the state of this spin to remain unchanged until time region we use the asymptotic form of the Bessel functions

both the domain wall a distance 1 to the right and the domain wall ,(t)=expt—n%2t)/\2=t. A lengthy but elementary com-
a distancen to the left must not reach the position of the newly putation then yields

flipped spin.
Let the size of this domain ba. The position of the P,(nt)=———, (19
interface that defines the left edge of this domain is distrib- T =T

uted according to the domain size distributibigin—1,7). o
The spin at the origin will then not change its color up to Which is exactly of the same form as Eq$0) and(11). At
time t if the two surrounding interfaces do not cross thefirst sight, it may seem surprising to find the same scaling

origin. The continuous part of the age distribution can thugunction, as well as the same expressionfg(t), as in the
be written as ballistic annihilation problem. Indeed, E) can be com-

puted from a mapping of the initial distribution of the inter-
® faces onto a random-walk proce&(t) can then be com-
P.(rt)= F(n—1, t—7mMO(t—r1). (14 puted in the same way as the probabili®(t,1) shown
+(mt) nZZ ( NQU-mmQ(t=rD. (14 above. Whenever we can determine a property of the
infinite-state Potts model via the behavior of two indepen-
The last factor is just the probability that the domain that isdent random walks, we should recover the same results as in

one lattice spacing to the right of the spin at the origin doeéh? ballistic annihilation problem. Neve_rtheless, some prop-
not reach the origin between timeand timet, while the first erties of these two systems are very different. For example,

two factors give the corresponding probability for the left- the domain size distribution in ballistic annihilation exhibits

neighboring domain that is a distanoefrom the origin. a nontrivial behavior that is characterized by an infinite num-
Each of the factors in this equation are well known. ThePer of singularitieg 22,34). o o
domain size distribution is given byF(n—1,7) Let us now consider the age distribution of spins in the

=E(n—1,7)—2E(n,7) +E(n+1,7), where E(k,t) is the tWo-state Potts model with zero-temperature spin-flip dy-
probability to find at leask successive spins of the same N@MiCS, i-e., the kinetic Ising-Glauber mod8P]. Since the
color at timet [33]. For a discrete lattice system, this latter SO!ution for Po(t) in the Ising-Glauber model is difficult

distribution satisfies a lattice diffusion equation, with bound--32, one can anticipate that calculation Bf,(7,t) is also
ary conditionE(0)=1 and initial conditionE(k,0)= &, o, subtle. We therefore study this problem numerically and give

corresponding to the initial condition where each spin is dif-NeUristic arguments to explain the limiting behaviors of the

ferent. The expression fd(k,t) is [32] age distributionP, (7,1). _ , ,
Our numerical results, which are based on simulations of
k-1 the equivalentA+ A— 0 reaction process, confirm that the

1 a2t ' scaling ansatz9)and (10) still applies(Fig. 4).
Ekt=1-e |°(2t)+2,—2‘1 2o+ | (19 The singular behavior of the scaling part of the age dis-
tribution function f(£) in the limits £/0 and 71 can be

and thus a}cc;ounted for by matching to the known behzi\ggrs in these
limits. When 7=0(1), P, (r,t)~ Pg(t)~t [35].
o Matching this with Eq.(9) at £é=r/t=0(t"!) implies the
F(n—1,7)= € Nl (27). (16 f(&)~ € *®as¢|0. This asymptotic behavior agrees well
T with our simulations. In the opposite limit af—t, the cor-

responding limiting form of the age distribution is deter-
In a similar vein, the probabilityQ(t,k) that a random mined by domain walls that have crossed the origin at time

walker that starts at=k does not hit the origin during the 7 close tot: This happens with probability 2 since the
time interval (Qt) is [32] number of domain walls decreases with timetas? [32].
The diffusing domain wall should then not cross the origin
k=1 again in the following time interval«,t): This happens with
Q(t,k)=et |0(t)+221 L)+ 1 (1) . (17)  probability t—7)" Y2 [36]. Thus P(7,t)~ t~4t—71)"2
=

which implies thatf (&)~ (1—¢) Y2 as ¢11, in agreement
with our numerical results. Indeed, the product of these two
So we finally obtain asymptotic formsfyes{£) =B 81— ¢~ provides a
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identical to that of the one-dimensional counterpart, first note
that the density of domain walls decaystas’?. This arises
because for nonconserved dynamics, the average domain size
grows ast'?[2] and domains appear to be compact. Conse-
quently, the domain wall density is expected to be the recip-
rocal of the average domain size. The perimeter of a domain
has typically a vicinal shape, with the kinks and antikinks
that define terraces undergoing diffusive motigims diffu-

sion does not cost energy and is therefore allowed at zero
temperaturg This diffusional motion is one dimensional in
character and thus a stépither kink or antikink that has
crossed a bond at time will not cross it again in the fol-

f(/t)

0.0 ‘ ‘ ‘ ‘ lowing time interval ¢,t) with probability ¢—7)~ Y2 The
0.0 0.2 0.4 0.6 0.8 1.0 age distribution is then given by the product of step density
wt and the above no-return probability, which gives

P(r,t)~t~Y(t—7) Y2 In fact, the evolution of interfaces
FIG. 4. Simulation data for the age distribution in the one-is a much more involved process—kinks and antikinks anni-
dimensional Ising-Glauber model. Shown is the scaling functionhjlate upon C0|||d|ng and Spin f||p5 at the corner give birth to
f(£) versus¢ for t=(1.5)'2 (+) andt=(1.5)"" (O), with the latter g pair of stepghorizontal and vertica—but in the small-age
data averagedsmoothed over five consecutive points. The solid |imjt these additional complexities should not qualitatively
line is the guess foef€)=B¢ "(1-£ "%  with  affect the age distribution.
B=0.259 34 . . ., asexplained in the text. In the large-age limitr<t, the scaled age distribution is
expected to behave d$¢)~ £°71, similarly to one dimen-
sion. Indeed, we confirmed numerically such a power-law
behavior and found tha~0.21 provides the best fit to our
data. This is consistent with previous simulations of the two-
dimensional Ising-Glauber model for which the fraction of
ersistent spin®(t) was found to decay as %%?[5,37).
To determine the form of the age distribution for the ki-
netic Ising-Glauber model in higher dimensions, we apply a

reasonable fit to the data over most of the rangé.df one
uses this guess over the entire ranget othen the normal-
ization condition fdé& fg,.{£)=1, requires the numerical
prefactor to beB=T"(7/8)/T"(3/8)'(1/2)=0.259 34 . . ..

For the generall-state Potts model with zero-temperature
Glauber dynamics, we may also expect that the age distribu-
tion scales, with the limiting behaviors of the scaling func-

tion given by mean-field approach. It is simple to solve f8r,t) in the
£o@-1 £10 mean-field limit (e.g., for the Ising model on a complete
f(&)~ " (200 graph since the dynamics in the zero-temperature case is
(1-§€) 7 &1 simple: Spins from the majority phase do not change their

) i i state, while spins from the minority phase change their state
The persistence exponefi(q), found analytically in Ref. \ith 5 constant rate that we may set equal to one. Suppose
[35], increases from 3/8 to 1 &g increases from 2 toc. ot the system starts from an initial condition where the
Thus the smiling form of the age distribution in the Ising f4ction of + and — spins is equal tgp andq=1—-p, re-
case(Fig. 4) gradually transforms into the half-smiling form spectively (with p=q without loss of generality Clearly,

of the infinite-state modesee Eq.(19)]. the fraction of spins that never change their state until time
) _ _ t is equal top+qe ". The probability that a minority spin
B. Higher dimensions changes its state in the time interval, £+d7) is equal to

In more than one dimension, aging of spins in the kinetice” "d7. Thus
Ising model is expected to depend on the temperature. If an
initially disordered system is quenched to a final temperature

T:>0, the average age Is expecied to be finite fodaill. . This result violates the scaling form of E@), but still im-

This follows because for nonconserved dynamics, even spi ies that the average afisee Ea(2)] increases linearly in
embedded within a large region of aligned spins will flip at ;ﬁl verage ag a1 ! yi

finite rate for all positive temperatures. On the other hand:ume'

for a quench to zero temperature, we anticipate that the av- T=(p+qge Ht+q(t—1+e H=t—q(l—e '~te ).

erage age will grow with time since spin flips can occur only (22)

at interfaces and these eventually disappear. To test this ex-

pectation, we performed numerical simulations of the two- V. SUMMARY AND OUTLOOK

dimensional kinetic Ising-Glauber model on the square lat- '

tice and found that the average age of the spins grows The age distribution in coarsening processes with a non-

linearly in time and that scaling still applies. Moreover, the conserved order parameter has been investigated by analyti-

age distribution function has the same qualitative smilingcal and numerical techniques. These approaches indicate that

form of the one-dimensional systefhig. 4). the average age grows linearly with the observation time of
In the small-age limitt— 7<t, the numerical data sug- the system. Exact results for two prototypical coarsening

gests a behavior of the age distribution that is consistent witlprocesses in one dimension, the deterministic ballistic anni-

P(7,t)~ t~Y4t—7)~Y2 To understand this result, which is hilation, and the stochastic infinite-state Potts model with

P(r,t)=(p+qe Ho(r)+qge " (21
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zero-temperature Glauber dynamics have been obtained. Fbirst class of systems arises because a steady state is reached.

the general g-state Potts model with zero-temperature On the other hand, for systems that coarsen it is perhaps

Glauber dynamics, asymptotic behaviors have been estabrorth investigating whether there are examples where the

lished. average age grows slower than linear in time. Numerical
Various results for the aging of spins in the Ising-Glauberevidence shows that the average age in the two-dimensional

model in general dimension have been obtained. The intekyoter model is growing slower than linearly and perhaps

esting situation, for nonconserved spin-flip dynamics, is thafpgarithmically in time. This intriguing possibility merits fur-

of zero temperature where domain walls ultimately disappeagher consideration.

so that the system undergoes aging. In particular, numerical For the coarsening processes examined in this work, the

results in two dimensions were found to be qualitativelygynamics determines the age distribution. It may be instruc-

similar to corresponding one-dimensional results. We anticitjye to study models with feedback, in which the aging pro-

pate that the bimodal smiling form of the age distribution cess influences the coarsening dynanfiid). The adaptive

will arise for all spatial dimensionl<4. Whend=4, how-  yoter model is one such example. Another possibly intrigu-

ever, the age distribution is eXpeCted to exhibit features S|m|mg extension would be to consider Coarsening processes
lar to the easily derived mean-field solutisee Eq(21)]. In wjth conservative dynamics.

particular, the fraction of spins that never flip should saturate
at a finite value even in the symmetric casepef q=1/2.
This has apparently been obsery8d], although it is hard to
definitively settle this issue by numerical means, especially
in the marginal case ad=4. The research reported here was supported in part by the

It is worth noting that for the models discussed in thisSwiss National Foundation, by the ARQ®@Grant No.
work, the only possibilities found are systems where the avbAAH04-93-G-002), and by the NSHGrant No. DMR-
erage age saturates to a finite value or where the average a@219845. We also thank J. F. Mendes for helpful discus-
increases linearly in time. The saturation of the age in thesions.
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